Quiz 2

1. If $t(n)$ is a function such that $t(1)=1$ and $t(n+1) \leq 3 t(n)+1$ then which of the following is true
(a) There exists a $c>0$ and N_{0} such that $t(n) \leq c^{n}$ for all $n \geq N_{0}$
(b) There exists a $c>0$ and N_{0} such that $t(n) \geq 3^{c n} n$ for all $n \geq N_{0}$
(c) For all $c>0$ there exists N_{0} such that $t(n) \geq n^{c}$ for all $n \geq N_{0}$
(d) For all $c>1$ and there exist $N_{0} \geq 0$ such that $t(n) \leq c 3^{n}$ for all $n \geq N_{0}$.

Ans: a and d. One may guess $t(n) \leq \sum_{i=0}^{n-1} 3^{i}=\frac{3^{n}-1}{2}$ and prove it by induction. Hence,
(a) True for $\mathrm{c}=3$
(b) False as, if $\mathrm{t}(\mathrm{n})=1$, that is, it is a constant sequence, the statement does not hold
(c) False, Same as above
(d) True, as $t(n) \leq 3^{n} \leq c 3^{n} \forall c>1$
2. Suppose $b_{1}, b_{2}, b_{3}, \ldots$ is a sequence defined by $b_{1}=3, b_{2}=6, b_{k}=b_{k-2}+b_{k-1}$ for $k \geq 3$. Prove that b_{n} is divisible by 3 for all integers $n \geq 1$. Regarding the induction hypothesis, which is true?
(a) Assuming this statement is true for $k \leq n$ is enough to show that it is true for $n+1$ and no weaker assumption will do.
(b) Assuming this statement is true for n and $n-1$ is enough to show that it is true for $n+1$.
(c) Assuming this statement is true for $n, n-1$, and $n-3$ is enough to show that it is true for $n+1$ and no weaker assumption will do since you need three consecutive integers to insure divisibility by 3 .
(d) Assuming this statement is true for n is enough to show that it is true for $n+1$.
(e) Assuming this statement is true for n and $n-3$ is enough to show that it is true for $n+1$ since 3 divides n if and only if 3 divides $n-3$.

Ans: b.
(a) False, as assumption in (b) is weaker but is yet sufficient
(b) True, as $3 \mid b_{n}$ and $3\left|b_{n-1} \Longrightarrow 3\right| b_{n+1}$. This is necessary and sufficient
(c) False, as assumption in (b) uses only two integers, not necessarily consecutive to prove the claim
(d) False, as it is not sufficient as $b_{k+1} \equiv b_{k}+b_{k-1}(\bmod 3)$
(e) False, as the statement is clearly wrong
3. If $P(n)$ is " $2^{n}>(n)^{2}$ " note that $P(k) \Longrightarrow P(k+1)$ for all $k \geq 3$. That means:
(a) $P(n)$ is true for all $n \geq 3$
(b) $P(n)$ is true for all $n \geq 4$
(c) $P(n)$ is true for all $n \geq 5$
(d) $P(n)$ is not true for any n.

Ans: с $n \geq 5$
(a) False, counterexample: 3
(b) False, counterexample: 4
(c) True, can be proved by induction
(d) False, as (c) is True
4. If $\mathrm{P}(\mathrm{n})$ is " $2 n<n!$ " then $\mathrm{P}(\mathrm{n})$ is true for all $n \geq x$. Then $\mathrm{x}=$? (Give the best possible integer answer, i.e. if it is true for $\mathrm{x}=7$ and $\mathrm{x}=15$ then give the answer as 7)

Ans: 4
$2 n<n!\Longrightarrow 2<(n-1)!\Longrightarrow(n-1) \neq 1,(n-1) \neq 2$ Hence, $(n-1)=3$, so $n>=4$ is necessary condition. We observe that it is true for $n=4$, and the rest is proved by induction
5. Given p , we want to prove q . Which of the following will suffice:
(a) $\neg q \Longrightarrow \neg p$
(b) $p \wedge q \Longrightarrow q$
(c) $\neg p \wedge \neg q \Longrightarrow p$
(d) $\neg q \Longrightarrow q$
(e) $p \wedge \neg q \wedge r \Longrightarrow \neg r$
(f) none of these

Ans: a and d. This can be solved using truth tables. (a) is correct as it is proof by contrapositive, and (d) is correct as it shows that $\neg q$ is not possible.
6. Given p , we want to prove q . Which of the following will suffice:
(a) $\neg p \wedge q \Longrightarrow p$
(b) $p \vee \neg q \Longrightarrow \neg p$
(c) $p \wedge \neg q \Longrightarrow(1=0) \vee p$
(d) $q \wedge p \Longrightarrow(1=1)$
(e) none of these

Ans: e. This can be solved using truth tables just like the previous question.
7. The sum $\sum_{k=1}^{n}(1+2+\cdots+k)$ is a polynomial of what degree
(a) 1
(b) 2
(c) 3
(d) 4
(e) 5

Ans: c
We shall prove that $\sum_{k=1}^{n}(1+2+\cdots+k)$ is bounded above and below by a polynomial of degree three.
$\sum_{k=1}^{n}(1+2+\cdots+k) \leq \sum_{k=1}^{n}(k+k+\cdots+k)=\sum_{k=1}^{n} k^{2} \leq \sum_{k=1}^{n} n^{2}=n^{3}$
$\sum_{k=1}^{n}(1+2+\cdots+k) \geq \sum_{k=1}^{n}((k / 2+1)+(k / 2+2)+\cdots+(k / 2+k / 2)) \geq \sum_{k=1}^{n}(k / 2+k / 2+$
$\cdots+k / 2) \geq \sum_{k=1}^{n} k^{2} / 4 \geq\left((n / 2)^{2}+(n / 2)^{2}+\cdots+(n / 2)^{2}\right) / 4=(n / 2)^{3} / 4=n^{3} / 32$
Hence, the sum is a polynomial of degree three.
8. If $k>1$ then $2^{k}-1$ is not a perfect square. Which of the following is a correct proof?
(a) If $2^{k}-1=n^{2}$ then $2^{k-1}-1=(n-1)^{2}$ and $\left(n^{2}+1\right) /\left[(n-1)^{2}+1\right]=2^{k} / 2^{k-1}=2$. But this later ratio is 2 if and only if $\mathrm{n}=1$ or $\mathrm{n}=3$. Thus, $2^{k}-1=n^{2}$ leads to a contradiction.
(b) If $2^{k}-1=n^{2}$ then $2^{k}=n^{2}+1$. Since 2 divides n^{2} and 2 does not divide $n^{2}+1$. This is a contradiction since obviously 2 divides 2^{k}.
(c) $2^{k}-1$ is odd and an odd number can never be a perfect square.
(d) If $2^{k}-1=n^{2}$ then n is odd. Since n is odd, therefore $2^{k}-1=4 j+1$, which implies 2^{k} for all $k>1$ is divisible by 2 but not by 4 . This is a contradiction.
(e) None of these.

Ans: d. The first three proofs are wrong and (d) is a valid proof.
9. Sai wants to prove $\sqrt{2}$ is irrational. He decides to prove this by contradiction. So he assumes: $\sqrt{2}$ is rational and thus of the form p / q (Where p and q are integers). Which of the following proofs is/are correct:
(a) Sai further assumes p is not divisible by 2 and proves that 2 divides p . Thus leading to a contradiction.
(b) Sai further assumes p and q are coprime and proves that p and q are not coprime. Thus leading to a contradiction.
(c) $\sqrt{2}$ is irrational. In the above 2 options, Sai has made more than one assumption while using the proof by contradiction method. This is wrong and therefore the above 2 proofs are wrong.
(d) We cannot use proof by contradiction to prove this result.

Ans: b. The question already assumes that $\sqrt{2}$ is irrational, and hence there cannot be a second assumption that p is not divisible by two, hence (a) is not valid. The assumption that p and q are coprime is without loss of generality since such p and q can always be found.
10. If n is a positive natural number then

$$
\frac{1}{1 \times 3}+\frac{1}{3 \times 5}+\frac{1}{5 \times 7}+\cdots+\frac{1}{(2 n-1) \times(2 n+1)}
$$

is equal to
(a) $2 n /(n+1)$
(b) $n /(2 n+1)$
(c) $n /(n+2)$
(d) $n / 2(n+1)$

Ans: b
Proof by induction or by telescopic method
11. Let $P(n)$ be a statement and we prove $P(k) \Longrightarrow P\left(k^{2}\right)$ and $P(k) \Longrightarrow P(2 k)$. Then we to prove that $P(n)$ is true for all n
(a) it is enough to prove the base case for $k=1$
(b) it is enough to prove the base case for $k=1$ and $k=2$.
(c) it is enough to prove that base case for $k=1$ and $k=2$ and $k=3$
(d) No base case can prove the statement.

Ans: d. As one cannot prove $k=5$ by (a),(b) or (c)
12. The sum $\sum_{k=1}^{n}\left(1^{3}+2^{3}+\cdots+k^{3}\right)$ is a polynomial of what degree
(a) 3
(b) 4
(c) 5
(d) 6

Ans:(c). Similar as problem 7.
13. Let $P(n)$ be a statement and we prove $P(k) \Longrightarrow P\left(k^{2}\right)$ and $P(k) \Longrightarrow P(k+3)$. Then we to prove that $P(n)$ is true for all n
(a) it is enough to prove the base case for $k=1$
(b) it is enough to prove the base case for $k=1$ and $k=2$.
(c) it is enough to prove that base case for $k=1$ and $k=2$ and $k=3$
(d) No base case can prove the statement.

Ans: c. (a) and (b) are false as this does not prove for $k=3$. (c) is correct as the three base cases are sufficient for $P(k) \Longrightarrow P(k+3)$ to imply the statement.
14. We are going to prove by induction that $\sum_{i=1}^{n} Q(i)=n^{2}(n+1)$. For which choice of $Q(i)$ will induction work?
(a) $3 i^{2}-2$
(b) $2 i^{2}$
(c) $3 i^{3}-i$
(d) $i(3 i-1)$
(e) $3 i^{3}-7 i$

Ans: d. By substitution, induction or summation formula. (Summation can be proved by telescopic sum method)
15. Let $P(n)$ be a statement and we prove $P(k) \Longrightarrow P(k-3)$ and $P(k) \Longrightarrow P(2 k)$. Then we to prove that $P(n)$ is true for all n
(a) it is enough to prove the base case for $k=1$
(b) it is enough to prove the base case for $k=1$ and $k=2$.
(c) it is enough to prove that base case for $k=1$ and $k=2$ and $k=3$
(d) No base case can prove the statement.

Ans: (d),(a) and (b) are false as they do not imply $k=3$. For d,
The statement is true for all numbers of the form 2^{j} and 3×2^{j} as $P(k) \Longrightarrow P(2 k)$. For all other numbers, we have:
Case I: $n \equiv 1(\bmod 3)$
Consider some even power of 2 , greater than n . This is of the form $3 j+1$, hence it implies n as $P(k) \Longrightarrow P(k-3)$
Case II: $n \equiv 2(\bmod 3)$
Consider some odd power of 2 , greater than n. This is of the form $3 j+2$, hence it implies n as $P(k) \Longrightarrow P(k-3)$
Case III: $n \equiv 0(\bmod 3)$
Consider some number of the form 3×2^{j} greater than n . This implies n as $P(k) \Longrightarrow P(k-3)$

